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ON THE REMAINDER OF GAUSSIAN QUADRATURE FORMULAS 
FOR BERNSTEIN-SZEGO WEIGHT FUNCTIONS 

F. PEHERSTORFER 

ABSTRACT. We give an explicit expression for the kernel of the error functional 
for Gaussian quadrature formulas with respect to weight functions of Bernstein- 
Szego type, i.e., weight functions of the form (1 - x)a(l + x)f8/p(x), x e 
(-1, 1), where a, fi E {-2-, '} and p is a polynomial of arbitrary degree 
which is positive on [- 1, 1 ] . With the help of this result the norm of the error 
functional can easily be calculated explicitly for a wide subclass of these weight 
functions. 

1. INTRODUCTION AND NOTATION 

We consider Gaussian quadrature formulas with respect to a nonnegative 
weight function w on the interval [-1, 1], 

p1 n 
(1.1) ] f(x)w(x)dx = Z)Ajf(xj) +Rn(f , w), 

j=1 

where xi = xi, n are the zeros of the nth-degree monic orthogonal polynomial 
Pn (., w) and Ai = Ai,n are the corresponding Christoffel numbers. If f is 
analytic in a domain D which contains in its interior the interval [-1, 1] and 
a contour F surrounding [-1, 1], the remainder term can be represented as a 
contour integral (see, e.g., [3]) 

(1.2) Rn(f, w) = 2 jKn(z, w)f(z)dz, 

where the kernel Kn (., w) is given by 

(1.3) Kn(z, w) =Rn (Rn w) 

or, alternatively, by 

(1.4) Kn(z, w) = Qn (z,w) 
Pn (z, w) 

where Qn(., w) is the nth function of the second kind, i.e., 

(1.5) Qn(z, W) = j Pn(X )w(x)dx for z E C\[-1, 1]. 
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Let us note that by (1.3), K,(, w) has the following series expansion: 

(1.6) K (z, w) R=(x, w) for ll > 1. 
k=2n 

From (1.2) the following well-known estimate of the remainder, based on con- 
tour integration, follows: 

(1.7) IRn(f, w)< max lKn(z, w)Imaxlf(z)I, 
27i zEr ~zEr 

where l(F) denotes the length of F. 
Another useful method to estimate the remainder for a function analytic in 

Cr = {Z E C: |Z < r}, r > 1, has been suggested by Hammerlin [4], namely: 
For a function f(z) = EZ=0 ak (f) Zk analytic in Cr define 

Ifir := sup{lak(f)Jrk: k E No and R,(xk, w) O}. 

Then, I Ir in the space 

3Cr := {f: f analytic in Cr and Ifir < ??} 

is a seminorm. The error functional Rn(f, w) is continuous in (3Xr I ir), and 
we have 

IRn (f, W) I < 1IRn 11 If Jr 

where IRn jj can be estimated by 

(1.8) IIRnII ? E |R1(x, w)| Z rk 
k=2n 

Equality holds (put f(z) = 1/(r - z), resp. 1/(r + z)) if for all k > 2n the 
condition 

(1.9) R,(xk, w) >?, resp. (-1)kR(xk, w) > 0, 

is fulfilled. Since by [3, Theorem 2.1], proved in [2], and the proof of Theorem 
3.1 in [3], the condition 

(1. 10) w (x)/w (-x) nondecreasing on (- 1, 1 ), 

resp. 

(1.1 1) w(x)/w(-x) nonincreasing on (-1, 1), 

implies that condition (1.9) holds for all k E No, it follows by (1.6) (see [3, 
Theorem 3.1]) that 

maxK (z, w)I Kn(r, w) if w satisfies (1.10), 
lzl=r '1 n K(-r, w)lI if w satisfies (1.11I), 

and 
IR = f rKn(r, w) if w satisfies (1.10), 

1 -rKn(-r, w) if w satisfies (1.11). 
Thus, we see that for the estimation of the remainder it is very desirable to have 
an explicit expression for the kernel Kn (z, w) . 



THE REMAINDER OF GAUSSIAN QUADRATURE FORMULAS 319 

Very recently, Notaris [8] computed jIR, 11 explicitly for weight functions of 
the form 

(1.12) w(x) =(1 - x)a(? + x)I/p2(x) for x E (-1, 1), 

where a, f, E {- I X } and P2 is a polynomial of degree at most two which is 
positive on [- 1, 1 ] and satisfies condition (1.10) or (1.1 1). For the special case 
when P2 is a polynomial of degree one or a particular even polynomial of degree 
two, this has been done before by Akrivis [1] (see also Kumar [5, 6]). Let us 
also mention that a detailed study of the kernel function for the four Chebyshev 
weight functions, i.e., P2(x) 1 in (1.12), can be found in Gautschi and Varga 
[3]. In this note we derive an explicit expression for the kernel Kn (z, w) (jjR, 11) 
for all Bemstein-Szego weight functions w (which satisfy condition (1.10) or 
(1.1 1)), where a weight function is called a Bernstein-Szeg6 weight function if 
it is of the form 

(1.13) 7(Wa,f (X, Pm) = (1 -X)a(1 +X)l/pm(X) forx E (-1, 1), 

with a, ,B E {- 2 , 2 } and Pm a polynomial of degree m, m arbitrary, which 
is positive on [-1, 1]. 

2. MAIN RESULT 

First let us recall the well-known fact that the so-called Joukowski transfor- 
mation 

(2.1) y = I (z + z-1) 

maps {z E C: lzl < 1}\{0} ({z E C: lzl > 1}) one-to-one onto C\[-1, 1] and 
that the inverse transformation is given by 

(2.2) z = y (+-) y 

where that branch of f is chosen for which > 0 for y E (1, oc). 
Note that the transformation (2.1) maps the circumference lzl = 1 onto the 
interval [-1, 1]. 

The following version of the Fejer-Riesz Theorem on the representation of 
positive trigonometric polynomials (compare Theorems 1.2.1 and 1.2.2 in [10]) 
will be needed. 

Lemma. Let Pm be a real positive polynomial on [-1, 1] of exact degree m. 
Then there exists a unique real polynomial 

m 

(2.3) gm(z) = rj(z - zv) with 0 < Jz,J < 1 for v =1,...,m 
v=1 

such that 

(2.4) pm (cosp) = cIgm(e i,)12 for p E [0, 2r], 

where c E R+. 
Proof. Let pm(x) = cHm I(av - x), where ce R and the av's are either in 
R\[- 1, 1] or appear in pairs of complex conjugate numbers. Hence, if we set 
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then 
O< Iz,j < 1 and a, = '(z,+zzj) forv=1,...,m. 

Thus, 

Pm(Cos 4X) = fC ( Vz -Ccos ) =cf ieti - lV2, 

since 

(eiP - zv)(e-iv - zV) = 2zv ( 1+ _cos q 

and the zv's are real or appear in pairs of complex conjugate numbers. 
Now the uniqueness remains to be shown. Suppose that 

m 
Pm (cos p) = d JJ lejie - v12 

v=1 

where d E R+, vv E {z E C: IzI < 1}\{0} for v = 1, ..., m,and the vv's 
are real or complex conjugate. Then it follows as above that (vv + vV 1)/2, 
v = 1, ..., m, is a zero of pm(cosep) and thus, since 0 < j vv < 1 and since 
the Joukowski transformation is one-to-one, the uniqueness follows. O 

Let us note that other representations of Pm of the form (2.4), but with gm 
having m - 1, resp. 1, 1 E {1, ... , m}, zeros inside, resp. outside, of the unit 
disk, can be obtained by replacing (2.5) by 

(2.6) Zvi = a>, + a- for j = 1,...,, 

where {v, ...v, v1} is an arbitrary subset of {1, ... , m}, and 

Zv =av - a Ifor v E 
{1 
... m}{, *-,IZ} 

Now let us set 
rw(x, Pm) 1/( X2pm(X)) forx E (-1, 1) 

and let gm be the unique polynomial from the above lemma. Then it follows 
by well-known results of Bernstein and Szego (see, e.g., [10, p. 31] and set 
hm(z) = vfrizmgm( i ) there) that, with z = e 1 and x = cosp , 

m 
2n-1P(x w(, Pm)) = ZajTn-j(x) 

j=0 

= Re{zn-mgm(z)} for 2n > m, 
m 

2nI 1Pn-I (x, (1- X2) W( Pm )) = E ajUn-I_ j(x) 
j=0 

2.7) 
= Im{zn-mgM(z)}/sin q for 2n > m, 

(2.7) 
n pm TnljX T-jX 

2 Pn(x, (1 +x)W(., Pm)) = Z aj +l-(x) + T_ (x) 
j=0 

= Re{zn-m+lI2gm(z)}/cos((p/2) for 2n + 1 > m, 
m 

Tn- X 
2nPn (x, ( -x)w (., Pm)) = Za Tn+ ( - 

- (X)Tn(x) 
j=0 

= Im{zn-m+l/2gm(z)}/sin((o/2) for 2n + 1 > m, 
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where gm(z) = ZE7o ajzm-i and T1, resp. Uj, denotes the Chebyshev poly- 
nomial of degree j of the first, resp. second, kind on [-1, 1]. 

We mention in passing that if gm in (2.7) is replaced by a polynomial km 
which also satisfies (2.4) but does not have all zeros in the open unit disk, then 
the polynomials on the right-hand side in (2.7) are not orthogonal with respect 
to wa,(, Pm), a, f? E {-2' I}. In fact (see [9, Corollary 5], corresponding 
results hold also for a = -,B = + 1), they are orthogonal with respect to a 
functional T of the form 

r+1 

T(p)= jP(X)Wa,6(X,pm)dx+L(p) forpEP, 

where L is a functional given by 
1* ii 

L(p) = Z Z Kp(ul, jp (av), 
j=1 K=1 

and the av 's are those zeros of Pm which correspond to the zeros of km lying 
outside of the unit disk by (2.6), lj is the multiplicity of the zero a, , and the 
Ik j'S are certain real numbers. 

We now give the announced explicit expression for the kernel function 
Kn(z, Waf,i), lal = Iflj =- - 

Theorem. Let Pm be given by (2.4). Then we have for y E C\[- 1, 1], on writing 
y=l(z+z-1) with lzl<1, i.e., z=y- y2-1,that 

4z2n+l1 
cKn(Y, W(, Pm)) = (1 _z2)gm(z){z2n-mgm(z) + gm(Z)} 

for 2n > m, 

2z 2n+1 (Z +)1 
cKn(y, (1 (X)W(., Pm)) = 2z2n+l -mgm 1) 

for 2n + 1 > m, 

cKn (y, (1 -x2)w (., Pm)) = g* (z) { z2n+2-m gm (-Z) _ gm(z)} 

for 2n+2 > m, 

where gm*(z) = zmgm( ). 
Proof. Let R and S be monic polynomials of degree at most two such that 

R(y)S(y) = y2 1, 

and let us put for abbreviation 

Pn(x) :=Pn(x, Rw(, Pm)) and Pn(X) =Pn (x ,Sw(, Pm))- 

Using the simple fact that for k E Z and (q E [0, 27r] 

(2.8) [Re{e'k, gm (e" )1]2 + [Im{ei k gm(e I )1]2 = jgm(ei" )12, 
we get, using (2.7) and (2.4), that with / = n + OR - 1 , where OR denotes the 
exact degree of R, 

(2.9) RP,2-SP 2 = knpm 
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where 22 2 -2+/c for R (x)-1, 
ekn {2 -2nC for R(x) x1 

+)2-2n+I/C for R(x)-x + 1 (x-1). 
Furthermore, it follows from Theorem 3(a) of our paper [9] that for 2n > 
m+ 1 -OR 

(2.10) RPn2 - S(YPn + PmPJ1)$)2 dnPm, 

where P(l) denotes the associated polynomial of Pn, i.e., 

n-,) Y =L(Y) y) (X) R(x)w (x, pm ) d x, 

and Y E P,,, ,u = max{m - 1, OR - 1}, is uniquely determined by the condi- 
tions that at each zero a, of pm(x) = cHm (av - x)mv , where e E R and m, 
is the multiplicity of the zero a>, 

(2.11) Y(i)(av) = (R/ (y2--)(j)(av) forj = 0, ... , mv- 1, 

and that for y -+ oo 

(2.12) (R/ y2--Y)(y) O(y-) 

furthermore, 
+1 

(2.13) dn= 2j Pn2(x)R(x)w(x, pm)dx. 

(We note that in the definition of 1/h in [9, p. 461] (_1)1-k/lVZH is to 
be replaced by (_I)l-k/7rvEH.) It now follows from [10, (2.6.5)] that the 
leading coefficient of the orthonormal polynomial of degree n with respect to 
Rw(., Pm) is equal to 2/-k for 2n > m+ 1-OR, which implies that dn = kn 
and thus, in view of (2.9) and (2.10), 

(2.14) +Pil = YPn + pmP(i) for2n > m+ 1 -OR. 

For a function f defined on C\[- 1, 1] and for x E (- 1, 1) we write, provided 
the limits involved exist, 

f )(x):= lim f(z) 

zEC(-) 

where C(-) {z E C: Im z ()0}. Observing that by (2.1 1) and (2.12) 

(2.15) (D(y) (R/I Vy2-1 - Y)(y) 

is analytic on C\[- 1, 1] and vanishes at infinity, and that the boundary values 
D?(x) , x E (-1, 1), from the upper (lower) half plane satisfy the relation 

(D x) -(D- (x) = 
2 

(x) forxE(-1, 1), 
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where we have used the fact that 

()+ 2~l+(x) = i V X = ~ - -(x), 

we get by the Sochozki-Plemel formula (see, e.g., [7]) 

1 +11I R(x) d 
(2.16) (Y) |+ yI Pm(X) =dx 

= Q0(y, Rw(, Pm)) for y E C\[-1, 1]. 

Recalling the well-known fact (see, e.g., [10, ? 3.5]) that for sufficiently large lyI 

Pn(y) =Qo(y, Rw(., Pm)) + (y(2+l)) 

we get, using (2.16) and (2.15), that 

(YPn + PmP,1)1 )(Y) = Pn(y)R(y)/ y 
I + Q(y-(n+l)+m) 

and thus, since for 2n > m + 1 - OR 

lim y-(n+ PR-l(y)R(y)/ry2- + Q(y(n+l)+m)} - 1 
y-o00 

the polynomial YPn + pmP(l) which by (2.14) is of exact degree n + OR - 1, 
has leading coefficient one. Hence, the plus sign holds in (2.14). Thus, the nth 
function of the second kind is of the form 

Qn(Y, Rw(., PM)) = -PM1y+~()oy Qn(Y XRw( XPm)) n-Pnl(y) + Pn(Y)QO(Y) 

(2.17) R_ (y)Pn(Y) - S(y)Pi(Y) __ kn 

VS(Y)Pm(Y) ( y21 P+Sp Y)y 

where the second equality follows with the help of (2.16), (2.15), and (2.14), 
and the third equality with the help of (2.9). Now the following equalities hold 
on the circumference I z = 1: 

2 Pn (2iz + z'),S w(.,v Pm)) = z-n(z2n-mg (z) + g*~(z) 
n nl I (z + Z -1), (1-X)W, pm))Znz2- 

z-n(Z2ngmgm(z) - gm(z)) (2.18) 2nPn ((I z 2I) )W(, Pm)) 

z-n(z2n+l-mgm(z) (+)gm(Z)) 

z 1 
(-) 

Since all functions appearing in (2.18) are analytic in the domain C\{0}, it 
follows that in (2.18) equality holds also on C\{O} . Hence, we get from (2.17) 
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and (2.18) that for y e C\[-I, 1], on writing y =(z + z-1) with z < 1, 

2-n+2 zn+l 
Qn(Y, W(, PM)) = (_ 2)gM*(Z) 

- 
2-n Zn+l 

(2.19) Qn(Y, (1 -X)Wk Pm)) - c 

2-n+1 zn+1 
Qn (Y, l (+X)W(-' PM)) c (l+))m) W ~~ ~~c 

where we have used the fact that /y2- 1 = (z1 - z)/2. Relation (2.19) in 
conjunction with (2.18) and (1.4) gives the assertion. o 

In the remark below we state sufficient conditions on the weight function 
Wa,fi(x, Pm), defined in (1.13), such that (1.10), resp. (1.1 1), is fulfilled. Since 
the product wI (x)W2(x) of two weight functions wI, w2 satisfies condition 
(1. 10), resp. (1. 1 1) if w 1 and W2 satisfy (1. 10), resp. (1. 1 1), we consider the 
behavior of w(x, Pm)/W(-X, Pm) for m E {1, 2} only. 

Remark. The ratio w(x, p)/w(-x, p) is nondecreasing (nonincreasing) on 
(-1,1) if 

+)(a-x), a E (1, oo) ((-o, -1)), 

p(x) = (a -x)(x-), a E (1, oo), E (-xo, -1), and -fi<a, 

(x - as)2 + l2 asER(+), BER, anda2+fi2>1, 

where the expressions in parentheses refer to the case of nonincreasing ratio. 
Setting in the preceding theorem 

91 (z) = z + a,aE (-,1,i.e., I gi(e9) 12 = 1 + a2 + 2ax, 

resp. for b > 0 

g2(z) = 2+ (1 + 2b)-1, i.e., Ig2(ei i)12 = 4(b2 + (1 + 2b)x2)/(2b + 1)2, 

where x = cos (o, we obtain the results of Kumar [5, 6] concerning the functions 
of the second kind, and the results of Akrivis [1] on the norm of the error 
functional Rn(, w,, f(, gj (ei) 12)), j = 1, 2. If we put 

23 (( 2a 
g2(z)=z2+ -4z+(1_2 x) 

with 0 < a < ,B, ,B :1 2a, and 3JI < fl - a, which gives 

TJg2 Ig(e )l= fi(fl - 2a)X2 + 2J(fl - a)x + a2 + 2, 

we obtain the results of Notaris [8] on the norm of the error functional, using 
his conditions (2.3i)-(2.42) on the parameters a, ,B, y, J under which the 
function w(x, Jg2(e i,)12)/w(-x, Ig2 (ei)12) is strictly increasing, resp. strictly 
decreasing. 
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